A boundary integral formulation of the Stefan problem

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY

This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed

متن کامل

A General Boundary-Integral Formulation for Zoned Three-Dimensional Media

A new boundary-integral formulation is proposed to analyze the heat transfer in zoned three-dimensional geometries. The proposed formulation couples the boundary formula, the gradient of the boundary formula, and the exterior formula. An advantage of this formulation over the traditional methods is that any linear condition at the interface between subdomains may be incorporated into the formul...

متن کامل

Boundary control of a nonlinear Stefan Problem

Abstract— The classical Stefan problem is a linear onedimensional heat equation with a free boundary at one end, modelling a column of liquid (e.g. water) in contact with an infinite strip of solid (ice). Given the fixed boundary conditions, the column temperature and free boundary motion can be uniquely determined. In the inverse problem, one specifies the free boundary motion, say from one st...

متن کامل

A mixed formulation of the Stefan problem with surface tension

A dual formulation and finite element method is proposed and analyzed for simulating the Stefan problem with surface tension. The method uses a mixed form of the heat equation in the solid and liquid (bulk) domains, and imposes a weak formulation of the interface motion law (on the solidliquid interface) as a constraint. The basic unknowns are the heat fluxes and temperatures in the bulk, and t...

متن کامل

the stefan problem with kinetic functions at the free boundary

this paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. a model problem with nonlinear kinetic law is considered. the main result is an existence theorem. the mathematical effects of the kinetic term are discussed

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 1986

ISSN: 0307-904X

DOI: 10.1016/0307-904x(86)90024-7